La implementación de un sistema basado en inteligencia artificial bayesiana, que será aplicado en territorio bonaerense, permitiría anticipar brotes de dengue durante este verano. Esta innovación, desarrollada por un equipo de la Escuela de Ciencia y Tecnología (ECyT) de la Universidad Nacional de San Martín(UNSAM), representa un paso innovador en la lucha contra esta enfermedad, que esta temporada promete ser más virulenta que el año anterior.
Ezequiel Álvarez es investigador del CONICET y profesor de la UNSAM y lideró este proyecto interdisciplinario que busca predecir con mayor precisión los focos de contagio, mitigando su expansión y permitiendo una intervención más eficiente. “Esperamos que este desarrollo ayude a prevenir los brotes de dengue de manera ágil y eficiente”, afirmó esta mañana Álvarez en declaraciones radiales.
El desarrollo será usado en la provincia de Buenos Aires, según lo anunciaron el gobernador Axel Kicillof y el ministro de SaludNicolás Kreplak, en el marco de la presentación de una serie de medidas preventivas para enfrentar la amenaza del dengue en la Provincia.
En qué consiste el desarrollo de la IA bayesiana
Lo novedoso del sistema es que, al alimentar el modelo con estos datos, la IA puede inferir magnitudes ocultas, como la cantidad de mosquitos infectados en un área específica o el nivel de descacharreo (la eliminación de recipientes donde los mosquitos pueden reproducirse) en una zona determinada.
Los desarrolladores del sistema consideran que esta capacidad de predicción representa una herramienta importante en la gestión de epidemias, especialmente en un contexto en el que el dengue ha mostrado picos preocupantes en su propagación. El sistema aprende de los datos históricos —ahora lo entrenan con los datos de la epidemia de 2023— y en tiempo real, ajustando sus predicciones y ofreciendo a los responsables de salud pública información precisa para intervenir en los puntos críticos antes de que los brotes se intensifiquen.